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ABSTRACT2

Polygenic risk scores (PRS) leverage the genetic contribution of an individual’s genotype to a3
complex trait by estimating disease risk. Traditional PRS prediction methods are predominantly for4
European population. The accuracy of PRS prediction in non-European populations is diminished5
due to much smaller sample size of genome-wide association studies (GWAS). In this article,6
we introduced a novel method to construct PRS for non-European populations, abbreviated as7
TL-Multi, by conducting transfer learning framework to learn useful knowledge from European8
population to correct the bias for non-European populations. We considered non-European GWAS9
data as the target data and European GWAS data as the informative auxiliary data. TL-Multi10
borrows useful information from the auxiliary data to improve the learning accuracy of the target11
data while preserving the efficiency and accuracy. To demonstrate the practical applicability of the12
proposed method, we applied TL-Multi to predict the risk of systemic lupus erythematosus (SLE)13
in Asian population and the risk of asthma in Indian population by borrowing information from14
European population. TL-Multi achieved better prediction accuracy than the competing methods15
including Lassosum and meta-analysis in both simulations and real applications.16
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1 INTRODUCTION

Genetic risk prediction is an important methodology for understanding the underlying genetic architecture18
and the inclusion of information on complex traits, such as estimating the genetic risk of complex traits19
or diseases (e.g., coronary artery disease)(Chatterjee et al., 2016; Ge et al., 2019). Polygenic risk scores20
(PRS) are one of the approaches to reflect a mathematical aggregation of risk by variants such as single21
nucleotide polymorphisms (SNPs) (Peterson et al., 2019). With the application of the best linear unbiased22
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predictor to estimate PRS, some methods use summary association statistics as training data (Consortium,23
2009; Vilhjálmsson et al., 2015; Shi et al., 2016), and others require individual-level data, such as genotype24
data and phenotypes (De Los Campos et al., 2010; Speed and Balding, 2014; Maier et al., 2015; Moser25
et al., 2015; Coram et al., 2017). As an implementation, PRS have become a widely used statistical tool26
to estimate the genetic risk of certain diseases or phenotypes (Mak et al., 2017). Specifically, PRS for a27
particular disease demonstrate the risk index for people to suffer from the disease. A remarkable study28
of five common diseases (coronary artery disease, atrial fibrillation, type 2 diabetes, inflammatory bowel29
disease, and breast cancer) found that people with top 8.0, 6.1, 3.5, 3.2, and 1.5% highest PRS had a30
three-fold higher risk to develop these diseases than people with average PRS (Khera et al., 2018).31

However, the majority of public genome-wide association study (GWAS) data has been conducted in32
European population (Popejoy and Fullerton, 2016). Due to the limited availability of non-European33
ancestral data and the diversity of linkage disequilibrium (LD) architectures among distinct populations,34
previous studies showed that the genetic architectures of specific phenotypes or diseases were highly35
consistent between populations (single-variant level and genome-wide level) (Huang et al., 2021).36
Hence, using PRS derived from European population can result in disease associations being under-37
or overestimated in other populations (Kim et al., 2018). Traditional approaches are insufficient to address38
this challenge when multiple populations are involved. Recent genetic statistical studies have indicated that39
diverse population variants share the same underlying causal variants (Brown et al., 2016; Shi et al., 2020),40
which raises the possibility of transferability of PRS across distinct ethnic groups. However, existing studies41
focus mostly on the application with one homogeneous population. For example, LDpred (Vilhjálmsson42
et al., 2015) and PRS-CS (Ge et al., 2019) improve the prediction accuracy by enhancing LD modelling.43
As an alternative, a penalized regression framework based on summary statistics, namely Lassosum was44
proposed by Mak et al. (2017), whereas these methods are limited to GWAS data from one homogeneous45
population. Current multiethnic PRS construction approaches that incorporate training data from both46
the European and target populations can leverage trans-ethnic GWAS information and stratify squared47
trans-ethnic genetic correlation in explanation of environmental effects on genes (Mak et al., 2017; Coram48
et al., 2017; Shi et al., 2021). Moreover, Márquez-Luna et al. (2017) proposed PT-Multi for multiethnic49
PRS prediction by performing LD-informed pruning and P -value thresholding (PT) (Consortium, 2009) on50
each homogeneous population and linearly combining the optimal PRS from each specific population.51

However, previous studies ignored the information gap among diverse populations. Li et al. (2020)52
proposed a high-dimensional linear regression model to transfer knowledge between informative samples53
and target samples to improve the learning performance of target samples. By using GWAS summary54
statistics from different ancestries and incorporating the idea of transfer learning (Li et al., 2020), we55
propose a novel statistical method called TL-Multi to enhance the transferability of polygenic risk prediction56
across diverse populations. TL-Multi assumes most causal variants are shared among diverse populations.57
There is a difference between the target samples and the informative auxiliary samples in the genetic58
architecture, which causes estimation bias. TL-Multi further corrects this bias and estimates the PRS using59
Lassosum (Mak et al., 2017). Additionally, TL-Multi inherits the advantages of Lassosum, ensuring that it60
has more accurate performance in all circumstances than initial PT and circumvents convex optimization61
challenges in LDpred. Moreover, TL-Multi extends the application to estimate the genetic risk from62
unmatched ancestral populations, and employs all available data without pruning or discarding. For63
practical analysis, we investigate TL-Multi prediction performance with informative auxiliary European64
samples from UK Biobank (https://www.ukbiobank.ac.uk), and European summary statistics65
and Hong Kong target samples from previous studies to predict PRS in systemic lupus erythematosus66
(SLE) (Wang et al., 2021; Morris et al., 2016; Julià et al., 2018). We obtain a greater than 125% relative67
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improvement in prediction accuracy compared to only using GWAS data from Hong Kong population.68
Furthermore, TL-Multi performs more accurately in PRS prediction in most scenarios in comparison with69
the recent multiethnic methods, meta-analysis, and PT-Multi.70

Additionally, we refer to Huang et al. (2021) to classify the PRS methods into two categories: single-71
discovery methods and multi-discovery methods. Single-discovery methods use GWAS data from a single72
homogeneous population, and multi-discovery methods apply the combined GWAS data of multiple73
populations.74

2 MATERIALS AND METHODS

2.1 Data Overview75

In this study, we requested the individual-level genotyped data for a previous SLE GWAS in Hong Kong76
(Wang et al., 2021) as the testing dataset, which included 1,604 SLE cases and 3,324 controls. We used77
GWAS summary statistics of SLE from both East Asian and European populations to train the models.78
The data for East Asians were collected from Guangzhou (GZ) and Central China (CC), including 2,61879
SLE cases and 5,107 controls (Wang et al., 2021). The data for Europeans were obtained from previous80
studies (Wang et al., 2021; Morris et al., 2016; Julià et al., 2018), involving a total of 4,576 cases and 8,03981
controls. Variants with minor allele frequency greater than 1% and imputed INFO scores greater than 0.782
in respectively ancestral groups were reserved for the following analyses.83

In our analysis of asthma, we requested the genotyped data of Indian and European individuals for84
asthma from UK Biobank. The UK Biobank data consisted of 4,160 unrelated Indian samples genotyped85
at 1,175,469 SNPs after QC and mapping HapMap 3 SNPs, and we further sampled 48,362 unrelated86
British samples genotyped at 1,189,752 SNPs after QC and mapping HapMap 3 SNPs. We divided the87
Indian samples into two groups: 3,160 samples as a training data set and 1,000 samples as a testing data88
set. As stated previously, the final data set comprises of 3,160 (408 cases and 2,752 controls) unrelated89
Indian samples for training, 1,000 (127 cases and 873 controls) unrelated Indian samples for testing, and90
48,362 (6,555 cases and 41,807 controls) unrelated British samples for training. Variants with minor allele91
frequency greater than 1% and P -values of Hardy-Weinberg equilibrium Fisher’s exact test < 1× 10−592
were kept. We then computed GWAS to derive the GWAS summary statistics of each population with each93
genotypes (after quality control) and adjusting for age and gender, and the top 10 principal components.94

2.2 Lassosum95

Lassosum is a statistical approach introduced by Mak et al. (2017) which enables to tune parameters96
without validation datasets and phenotype data via pseudovalidation, and outperforms PT and LDpred97
in prediction (Consortium, 2009; Vilhjálmsson et al., 2015). It refers to the idea of Tibshirani (1996)98
to deal with sparse matrices and calculate PRS only by using summary statistics and an external LD99
reference panel. In this article, the ancestry-matched LD block is generally estimated by the 1000 Genome100
project (https://www.internationalgenome.org). Additionally, we keep the reference panel’s101
ancestry consistent with that of our target population. Furthermore, if the SNP-wise correlation ri is not102
available, we can estimate ri following Mak et al. (2017): ri = ti√

n−1+t2i
.103
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2.3 PT-Multi104

PT-Multi assumes the multiethnic PRS is a linear combination of the most predictive PRS from each105
population. First, it applies LD-pruning and P -value thresholding (PT) (Consortium, 2009) to each single106
ethnic summary statistics and gets the most predictive PRS. Second, it fits marginal linear regression models107
to get weights for each population, respectively. We apply the R package ‘bigspnr’ (Privé et al., 2018) to108
validation data for LD informed clumping with r2 threshold of 0.1. The P -value thresholds are among:109
1, 0.3, 0.1, 3× 10−2, 10−2, 3× 10−3, 10−3, 3× 10−4, and 10−4. We conduct 10-fold cross-validation to110
determine the optimal P -value threshold for each population. We use an independent validation data set to111
compute the final PRS and the average value of R2 across the 10 folds.112

This article uses single-discovery method (Lassosum) to regress European, Asian, and multi-discovery113
methods (meta-analysis, TL-Multi, PT-Multi) to determine the most predictive PRS with the highest R2.114
For ease of notations, let PRSa, PRSe, PRSma, PRStl, and PRSpt represent PRS for Asian, European,115
meta-analysis, TL-Multi and PT-Multi, respectively.116

2.4 Meta-analysis of two diverse ancestries117

We generate the estimates of effect sizes of joint GWAS data by

β̂ma =

β2
a

sea
+ β2

e
see

se−2
a + se−2

e
,

where βa and βe are the effect sizes obtained from Asian and European GWAS data, respectively, and
sea and see are the standard errors obtained directly from ancestry-matched GWAS data. Furthermore, the
estimate of the standard error in meta-analysis is defined as:

ŝema =

√
1

se−2
a + se−2

e
,

and the estimate of z-statistic is obtained from:

ẑma =
β̂ma

ŝema
.

The P -value is converted from ẑma following:

P-value = 2Φ(−|ẑma|),

where Φ(·) is the cumulative distribution function of the standard normal distribution N(0, 1). In this118
meta-analysis, the ancestry of the reference panel is consistent with the ancestry of the target population.119
Furthermore, due to the majority of the total sample being of European ancestry, the LD block is estimated120
from European population in the 1000 Genome Project.121

2.5 Multiethnic polygenic risk scores prediction using TL-Multi122

In this article, we employ European population data as our informative auxiliary data, owing to its large
sample size and relative accessibility. Additionally, we treat East Asians as the target population due to
the scarcity of public data (Brown et al., 2016; Shi et al., 2020). Recall the fundamental framework we
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using for genetic architecture and phenotype, it is a linear combination with effect sizes β, and an n-by-p
genotype matrix X , where p is the number of columns containing marker genotype codes corresponding
to the number of reference alleles on the sample-specific SNP (e.g., 0, 1, 2) , and n is the sample size,
following as:

y = Xβ + ϵ,

where y is a vector of clinical outcomes. Tibshirani (1996) proposed Lasso which is commonly used
to estimate coefficients β̂ (weights of X), when p (the columns of X or the number of elements of y) is
relative large to result in many β̂ being 0. Specifically, the optimization problem of target population is
equivalent to minimizing the objective function:

L(βa) = (ya −Xaβa)
T (ya −Xaβa) + 2λ∥βa∥1,

where ya is the vector of Aisan phenotypes, Xa is the genotype matrix of Asian population, L(·) is an123
optimizing function, ∥βa∥1 is the L1 norm of βa, and λ is a data-dependent parameter determining the124
proportion of βa to be estimated to 0. It can be widely extended in the scenarios in which only the summary125
statistics are available (Mak et al., 2017).126

Motivated by Lassosum, we further propose a novel method, namely TL-Multi to extend its application127
to multiethnic polygenic prediction. We observed additional samples from auxiliary studies (e.g., European128
population). The estimate of the marginal effect sizes of European population, β̂e, can be generated using129
the auxiliary model:130

L(βe) = (ye −Xeβe)
T (ye −Xeβe) + 2λ∥βe∥1, (1)

where ye is the vector of European phenotypes, and Xe is the genotype matrix of European population.
For illustration, we denote the auxiliary studies, in which informative auxiliary samples can be transferred,
and the target model and auxiliary model are similar at certain levels (e.g., similar genetic architectures).
Furthermore, we assume the difference between auxiliary samples and target samples is denoted as (Li
et al., 2020):

δ̂ = β̂a − β̂e,

where β̂a (the weights of target population e.g., Asian population Xa) is the target regression estimator, and131
β̂e (the weights of auxiliary population e.g., European population Xe ) is the estimator for auxiliary study.132
Furthermore, the informative auxiliary set, Aq, has a requirement to ensure that the information auxiliary133
set includes sufficiently different information under a constrained level. Specifically, the information134
difference should satisfy the sufficient sparsity:135

Aq = {∥δ̂∥q ≤ h}, (2)

where q ∈ [0, 1], ∥δ̂∥q is the Lq norm of the information difference δ̂ of the informative auxiliary samples.136
The assumption requires the auxiliary informative population Aq to include samples in their contrast137
vectors with a maximum Lq-sparsity of at most h. Moreover, we assume Aq is informative to improve138
the prediction performance of target population while h is relatively small compared to β̂a. Specifically,139
when q = 0, the set Aq implies that there are at most h casual variants. For q ∈ (0, 1], this scenario may140
be explained that all the variants are causal variants with rapid relative amplitudes decaying effect sizes.141
Therefore, the smaller the h, the auxiliary samples of Aq tend to be more informative, where |Aq| leverages142
the number of informative auxiliary samples.143
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Our goal is to correct the bias between these populations and improve prediction performance in Asian144
population. First, we can estimate the marginal effect sizes of European population, β̂e by minimizing the145
objective function based on equation (1):146

L(β̂e) = argmaxβ2r
T
e βe − βT

e Reβe − λ∥βe∥1, (3)

where re = XT
e ye is the SNP-wise correlation between the genotype matrix of European population Xe147

and the phenotype ye, and Re is the LD matrix indicating a matrix of correlations between SNPs. The148
estimates of re can be obtained from summary statistics, and the estimates of Re can be obtained from149
publicly available databases, such as the 1000 Genome project. As Mak et al. (2017) indicated, the PRS150
can be estimated by optimizing equation (3) without extra individual-level data.151

Specifically, TL-Multi estimates the PRS of Asian population by correcting the bias between European152
and Asian populations. We further denote the bias as δ which is the difference between European and153
Asian populations in genetic architecture. The new estimate of effect sizes of Asian population can be154
presented as: βtl = βe + δ, in which δ is estimated by:155

L(δ̂) = argmaxδ2
(
rTa δ + δRaβe

)
− δTRaδ − λδ∥δ∥1. (4)

According to pseudovalidation proposed by Mak et al. (2017), the optimal single-discovery PRS for156
European and Asian populations can be determined directly by the highest R2 without the phenotypes.157
The optimal estimates of effect sizes of Asian and European populations that we apply to TL-Multi158
are the ancestry-matched optimal PRS, respectively. The Algorithm 1 describes our proposed TL-Multi159
algorithm, and we further develop an R package, which is publicly available at https://github.com/160
mxxptian/TL-Multi.git.161

Algorithm 1 Algorithm for TL-Multi

Data: ra, re, X⋆
a (genotype matrix of target samples), Ra, Re, ya, (λ(1), · · · , λ(K)) (the tuning parameters

for β̂e for K-fold cross validation), (λ(1)δ , · · · , λ(K)
δ ) (the tuning parameters for δ̂ for K-fold cross

validation);
Result: PRStl;

1 Obtain {β̂e
(k)

}Kk=1 by solving L(β̂e) = {j ∈ [K] : argmaxβ2r
T
e βe − βT

e Reβe − λ(j)∥βe∥1} with
different tuning parameters (λ(1), · · · , λ(K));

2 Evaluate model performance by R2 with ya;
3 Obtain the optimal β̂e with the maximum R2;

4 Obtain β̂
(j)
tl = δ̂

(j)
+ β̂e by solving L(δ̂) = {j ∈ [K] : argmaxδ2r

T
a δ + 2δX⋆

a
TXaβ̂e − δTRaδ −

λ
(j)
δ ∥δ∥1} with different tuning parameters (λ(1)δ , · · · , λ(K)

δ );
5 Evaluate model performance by R2 with ya;
6 Obtain the optimal β̂tl with the maximum R2;
7 PRStl = β̂tlX

⋆
a.
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2.6 Simulation studies162

We performed a wide range of simulation studies to evaluate the performance of TL-Multi. We used
real genotypes of European population from UK Biokbank and Asian population from previous SLE
study (Wang et al., 2021). Following the quality control procedure provided in Chang et al. (2015), we
utilized the UK Biobank and Asian lupus genotype data whose P -values of Hardy–Weinberg equilibrium
Fisher’s exact test < 1× 10−5 with minor allele frequency (MAF) > 1% and filtered out SNPs and missing
samples. Then, we simulated the effect sizes based on the genetic architecture correlation and applied
the R package ‘bigsnpr’(Privé et al., 2018) to generate quantitative phenotypes and conduct GWAS to
determine the summary statistics. Based on these estimated summary statistics, we employed the following
PRS prediction methods. We further extracted the common variants between European samples and Asian
samples. This resulted in 69, 398 SNPs in total, and 4, 049 subjects in Asian population. We fixed SNP-
heritability h2 at 0.5, and further simulated genetic architectures by randomly treating 1%, 1.5%, 2%, and
5% variants as causal variants. We assumed that these causal variants were shared in multiple populations
with different effect sizes. Additionally, we sampled effect sizes from a multivariate normal distribution
with a wide range of cross-population genetic correlation values (0.2, 0.4, 0.6, and 0.8) (Huang et al., 2021;
Bulik-Sullivan et al., 2015), where for each population the variance is σ2 = h2

m and m is the number of
causal variants. There were 12 combinations in total. For each scenario, we generated 20 replicates and
calculated the average values to assess the prediction accuracy. We took out the original phenotypes and
generated new ones based on a linear framework:

y = Xβ + ϵ,

where X is the training set of the standardized genotype matrix, and ϵ represent the random error which163
was generated from N(0, 1− h2). And GWAS was implemented using the R package ‘bigsnpr’ to obtain164
the summary statistics for each simulated phenotype.165

Due to the possibility that sample size affects performance, we investigated 25:1 and 50:1 proportions of166
European samples to Asian samples. Additionally, we observed that the number of variants has a significant167
influence on the prediction performance, and the majority of variants are located on chromosomes 1-168
11. Motivated by previous works (Vilhjálmsson et al., 2015; Márquez-Luna et al., 2017), we further169
extrapolated the performance at large sample size by conducting simulations with different subsets of170
chromosomes to increase N

M , where N is the total number of samples and M is the number of SNPs: (1)171
using chromosomes 1-4; (2) using chromosomes 1-6; (3) using chromosomes 1-8; (4) using chromosomes172
1-11.173

3 RESULTS

3.1 Simulations174

We performed simulations with real genotypes and simulated continuous phenotypes. We split the data175
from Hong Kong population into two groups: 1,000 samples as a training data set and 3,049 samples as176
testing data, and drew 50,000 samples from European samples. The training data set was used to simulate177
phenotypes, and the testing data were applied to performance assessments. The prediction accuracy was178
assessed by R2, which was based on the simulated phenotypes generated from the test data. Specifically,179
LD blocks for single-discovery method were ancestry-matched as the reference panels, and they were in180
correspondence with the ancestry of the target population for multi-discovery methods.181
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In Figure 1, we displayed the average values with a 95% upper bound of each simulation setting under182
scenario (1) over 20 replicates. We conducted single-discovery analyses for Asian and European populations183
by Lassosum, and multi-discovery analyses by meta-analysis, TL-Multi, and PT-Multi. Lassosum adopted184
the PRS with the maximum R2 by 10-fold cross-validation. We observed that meta-analysis could not185
improve the prediction accuracy when single-discovery analysis of European population did not perform186
better than the Asian one. Particularly, when the genetic architecture correlation was quite low (ρ = 0.2),187
meta-analysis and European prediction performances were comparably inferior. In this case, it was188
explained that the shared information between the Asian and European populations would be limited,189
preventing prediction improvement from being achieved by directly integrating the European data. It also190
reflected the consistent relationship between meta-analysis and single-discovery analysis of the informative191
population. Moreover, meta-analysis could hardly outperform the European one. The performance of192
Lassosum for European population dominated the performance of meta-analysis since the sample size193
of European population is significantly larger than that of Hong Kong. Additionally, we observed that194
TL-Multi could always improve the accuracy compared to Lassosum for Hong Kong population. If the195
genetic architecture correlation was not too high (e.g., ρ = 0.4 or 0.6), TL-Multi attained the highest196
prediction accuracy compared to competing approaches. However, when the genetic architecture was high197
(ρ = 0.8), we noticed that TL-Multi performed slightly worse than other approaches. In this example,198
the results might be explained by the remarkable similarity of the genetic architecture. When the genetic199
correlation reaches 0.8, the majority of information about the Asian population would be directly explained200
by that of the European population. Combining these two groups in the meta-analysis might increase the201
accuracy of estimated effect sizes.202

In most scenarios, TL-Multi outperformed PT-Multi. Specifically, TL-Multi substantially improved203
multiethnic prediction accuracy for the instances with 1%, 1.5%, 2% causal proportions. PT-Multi204
conducted PT, which caused information loss in the data. However, TL-Multi could take all the data205
information into account. We found TL-Multi performed poorly at a 5% causal proportion. We noted206
that under this situation, the result of Lassosum for Hong Kong population was significantly inferior to207
that of European. We referred to the assumption (2) to cast doubt on the breach of our assumption. If208
the assumption does not hold, European population could not be denoted as auxiliary informative data209
because the useful information was limited. Due to it, TL-Multi would fail to borrow the information to210
improve the learning performance of the target population. Alternatively, consider that the effect sizes were211
simulated depending on the number of causal variations, m. As the proportion of causality rose, the effect212
sizes tended to approach zero. Limited by small sample size of the Asian population, the bias between the213
estimated effect sizes derived from the simulated phenotypes and the actual effect sizes would be even214
larger. Some causal variants with relative small signals more likely erroneously failed to be captured which215
resulted in the restricted TL-Multi’s performance. However, it is noteworthy that TL-Multi still enhanced216
Hong Kong’s prediction accuracy in this scenario. We discovered that the performance of meta-analysis217
and PT-Multi for Hong Kong were nearly identical to that of Lassosum for Europeans, when we attributed218
to the huge disparity in multiethnic sample sizes. To summarize, European population dominated the219
performance of meta-analysis and PT-Multi. In particular, TL-Multi could be employed to the moderate220
genetic architecture correlations (e.g., ρ = 0.4, and 0.6) when the informative auxiliary population (e.g.,221
European population) outperformed the target population (e.g., Hong Kong population). Referring to the222
assumption (2), the performance of European population was supposed to be more accurate than that of223
the target population, therefore it would be appropriate to borrow information from it. Moreover, if the224
proportion of casuals increased, the estimated effect sizes of the target population would be relatively225
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biased. We found that the precision of the effect sizes of the target population would have a substantial226
effect on TL-Multi.227

Alternatively, we generated phenotypes using different chromosome subsets and sample sizes of European228
population while maintaining a fixed Hong Kong sample size. Over 20 replicates, we took the performance229
using a fixed genetic correlation of 0.4 and 1.5% causal variants as an example. In Figure 2(A), we230
drew 25,000 European subjects and 1,000 Hong Kong subjects. We observed that TL-Multi performed231
much better than the competing approaches. While the performance of Hong Kong was superior to that232
of Europeans, the performance of the meta-analysis was poor compared to that of Hong Kong. As the233
total number of SNPs increased, the prediction accuracy of Hong Kong dramatically decreased. However,234
the prediction accuracy of Europeans decreased relatively slowly. Specifically, under scenario (4), TL-235
Multi was inferior to the other two multi-discovery methods. This could be explained that for this case,236
there were 1,000 subjects from Hong Kong with 49,909 SNPs which resulted in a significant bias while237
estimating the effect sizes by applying GWAS. In this case, TL-Multi thus failed to improve the accuracy238
of the forecast compared to the previous scenarios, as the bias in the estimates of Hong Kong’s effect239
sizes was larger. Moreover, the consistent trend in European, meta-analysis, and PT-Multi supported240
our previous extrapolation that the performance of European population could determine the primary241
contribution of the other two. In Figure 2(B), we simulated 50,000 European subjects. We further observed242
that the performance of PT-Multi was inferior to TL-Multi under the scenarios (1)-(3) and both of them243
outperformed the single-discovery method and meta-analysis. Furthermore, the performance of meta-244
analysis was consistent with that of European. As a result, even though the prediction accuracy of TL-Multi245
went down, it was still better than the meta-analysis’s prediction accuracy under all the scenarios.246

3.2 Analysis of SLE in Hong Kong Population247

We further applied the above four approaches to predict SLE risk in Hong Kong population to evaluate248
the performance in real data analysis. We used European SLE GWAS summary statistics from previous249
studies (Wang et al., 2021; Morris et al., 2016; Julià et al., 2018) (4,576 cases, and 8,039 controls), and the250
ancestry-matched GWAS summary statistics (Wang et al., 2021) (2,618 cases, and 5,107 controls). The251
validation data for Hong Kong population were from Wang et al. (2021) (1,604 cases, and 3,324 controls)252
employing 10-fold cross-validation following Mak et al. (2017).253

We reported the area under the receiver operating characteristic curve (AUC) to assess the prediction254
accuracy of derived PRS. The ethnicity of the LD block is consistent with that of the majority population255
in GWAS data, and the LD block was derived from Berisa and Pickrell (2016). Furthermore, the reference256
panel was obtained from the 1000 Genome Project, and the ethnicity of it was consistent with the target257
population’s. We set the P -value thresholds to be the same as the values in simulation studies, and r2 = 0.1.258
In real data analysis, TL-Multi outperformed the competing methods. The optimal PRS from European259
GWAS data yielded AUC of 0.6872 and 0.6943 from East Asian GWAS data. We further obtained the260
optimal PRS of meta-analysis, TL-Multi and PT-Multi, with AUC values of 0.7098, 0.7131, and 0.5447 ,261
and the corresponding ROC curves were depicted in Figure 3. For binary classification, we used a logistic262
regression to obtain the mixing weights in PT-Multi. Consistent with the evaluations in simulation studies,263
we observed that TL-Multi improved 2.7% in prediction accuracy compared to Lassosum for Hong Kong264
population, and meta-analysis improved 2.2% compared to Lassosum. However, PT-Multi performed even265
worse than single-discovery method in real data analysis.266

Moreover, we reported the case prevalence of the bottom 2%, 5%, and 10% and top 2%, 5%, and 10% of267
PRS distribution, constructed by single-discovery method, meta-analysis, and TL-Multi in Table 1. This268
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summary report demonstrated the case prevalence under different PRS conditions. For instance, the bottom269
numbers indicate the prevalence of SLE among individuals with low PRS. We observed that TL-Multi had270
satisfactory performance and showed 10.66, 7.50, and 5.80 fold increases comparing the top 2%, 5%, and271
10% with bottom 2%, 5%, and 10% of the PRS distribution, respectively.272

273

3.3 Analysis of Asthma in Indian Population274

We applied the same methods to the Indian and European samples from UK Biobank computing associated275
summary statistics by ‘bigsnpr’ R package. We splitted 1,000 (127 cases and 873 controls) unrelated Indian276
samples as validation data, and 3,160 (408 cases and 2,752 controls) unrelated samples as training data,277
and further sampled 48,362 (6,555 cases and 41,807 controls) unrelated European samples. We further278
reported the AUC of the above four methods to evaluate the optimal prediction method. The ancestry of279
LD blocks matches to that of the data’s predominant population. We used training data as a reference panel280
whose ancestry was always identical to that of the target population. During pruning and clumping, the281
P -value thresholds were set to be equal to simulation with r2 = 0.1.282

The ROC curves for binary classification are depicted in Figure 4. The optimal PRS from European and283
Indian samples revealed AUC values of 0.5657 and 0.5441, respectively. In addition, for the multiethnic PRS284
construction methods, the optimal PRS of meta-analysis, TL-Multi, and PT-Multi resulted in AUC values285
of 0.5705, 0.5721, and 0.6427, respectively. We found that TL-Multi was superior to the all singe-discovery286
methods and meta-analysis. For binary classification, TL-Multi improved 5.15% in prediction accuracy287
compared to Lassosum for Indian population, and meta-analysis improved 4.85% compared Lassosum288
for Indian population. We noted that PT-Multi performed better than ours. However, the comparison289
of PT-Multi method with other methods might not be fair since PT-Multi required individual level data290
whereas other four approaches solely relied on the summary statistics. Moreover, access to individual-level291
data was typically difficult.292

Additionally, the case prevalence of the bottom 2%, 5%, and 10% and top 2%, 5%, and 10% of PRS293
distribution, conducted by Lassosum for Indian and European, mata-analysis and TL-Multi was reported in294
Table 2. We observed that TL-Multi would also perform with more accuracy in terms of case prevalence295
than the competing methods.296

4 DISCUSSION

In this article, we have proposed a novel approach named TL-Multi to improve the accuracy of PRS297
prediction for non-European populations. Our proposed method leverages summary statistics and makes298
complete use of all available data without clumping. We have shown that transferring the information299
from the informative auxiliary populations (e.g., European) to the target populations (e.g., East Asian) can300
indeed improve learning performance and the prediction accuracy of the target populations compared to301
the single-discovery methods. Particularly, TL-Multi shows a higher AUC compared to meta-analysis and302
PT-Multi in analysis of SLE in Hong Kong population. In our analysis of asthma in the Indian population,303
TL-Multi outperforms Lassosum and meta-analysis in terms of prediction performance and case prevalence304
prediction accuracy. Moreover we note that in the field of PRS prediction, there is no a particular method305
outperforms all the others. It depends on the specific situation to select an appropriate method. For instance,306
PRS-CS can always outperform PT in Huang et al. (2021), but PRS-CS may be inferior to PT in Weissbrod307
et al. (2022) in some circumstances. Therefore, we provide some potential circumstances in which TL-Multi308
would be an appropriate choice. First, TL-Multi is implemented using summary statistics and performs well309
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under the moderate genetic architecture correlation (e.g., ρ = 0.4 and 0.6) and moderate causal proportions310
(e.g., m

M = 1% , 1.5%, and 2%). Second, based on the assumption (2), TL-Multi would be a good alternative311
when the single-discovery method’s performance of the informative auxiliary population is superior to that312
of the target population.313

Compared to the single-discovery methods, we showed that the performance of TL-Multi was always314
more accurate with an acceptable running time (e.g., 2 minutes) than the performance of Lassosum for315
Hong Kong population, especially under moderate genetic correlation (e.g., ρ = 0.6). When the sample316
size of the target data set is limited, increasing the sample size of the informative data set can enhance the317
prediction accuracy of TL-Multi. In the simulation studies, we found that the performances of meta-analysis318
and PT-Multi were dominated by the performance of Lassosum for European population. As the genetic319
architecture correlation was rather high (ρ = 0.8), TL-Multi may perform poorly, and it would be more320
prudent to consider approaches that integrate the whole data set across distinct populations. Therefore,321
the performances of PT-Multi and meta-analysis were unsatisfactory, while the performance of European322
population was worse than that of Hong Kong population.323

Another advantage of TL-Multi is its powerful transferability, which corrects the bias in estimation324
between European and non-European populations. De Candia et al. (2013) showed that the cross-population325
genetic correlation could leverage the causal effect sizes in different populations. In simulation studies,326
TL-Multi performed better when the genetic correlations were 0.4 and 0.6. It indicated that TL-Multi327
could be widely applied to two different populations which share some common genetic architecture328
information. Moreover, TL-Multi retained the pseudovalidation proposed in Mak et al. (2017). It extended329
the application of TL-Multi to fit the data without a validation data set and phenotype data.330

Despite these advantages, some limitations of TL-Multi still remain for the future work. For example, if331
the difference between two populations is too enormous, our proposed approach’s assumptions will fail to332
hold. It is worth bearing in mind to deal with this scenario. And in this article, we did not consider the X333
chromosome, whose information could also contribute to prediction accuracy (Tukiainen et al., 2014). In334
recent years, some approaches have fitted multiple diseases simultaneously (Maier et al., 2015; Turley et al.,335
2018; Chung et al., 2019; Musliner et al., 2019; Graff et al., 2021). These studies inspire us to investigate336
other TL-Mutli extensions that bridge not only the gap between populations but also the gap between337
illnesses in the interim.338
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Figure 1. Prediction accuracy of Lassosum, meta-analysis, PT-Multi, and TL-Multi over 20 replications in
simulations. Lassosum HK is Lassosum for Hong Kong population, and Lassosum Eur is Lassosum for
European populations. Heritability was fixed at 0.5 and different genetic correlations (0.2, 0.4, 0.6, and
0.8) with different causal variant proportions (1%, 1.5%, 2%, and 5%) were generated. 50,000 European
samples and 1,000 Hong Kong samples were simulated. The variants were generated from the common
variants of the first 4 chromosomes (21,477 SNPs). The prediction accuracy was measured by R2 between
the simulated and true phenotypes. The error bar indicated the upper bound of 95% confidence interval
over 20 replications.
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Figure 2. Prediction accuracy of Lassosum, meta-analysis, PT-Multi and TL-Multi over 20 replications
in simulations. Selected ratio of SNPs is the ratio of the actual numbers of SNPs simulated to the total
number of common SNPs (69,398). The actual numbers of SNPs simulated in the four scenarios are 21,477
(chromosomes 1-4), 32,151 (chromosomes 1-6), 39,682 (chromosomes 1-8), 49,909 (chromosomes 1-11)
respectively. The average of R2 are plotted. (A) The sample size of European population is 25,000, and the
sample size of Hong Kong population is 1,000. (B) The sample size of European population is 50,000, and
the sample size of Hong Kong population is 1,000.
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Figure 3. Receiver operating characteristic curve of Lassosum, meta-analysis, and TL-Multi in analysis of
SLE study. Lassosum HK is Lassosum for Hong Kong population, and Lassosum Eur is Lassosum for
European population. The corresponding AUC values with the optimal PRS of Lassosum for Hong Kong
population and European population, meta-analysis, and TL-Multi are 0.6872, 0.6943, 0.7098 and 0.7131,
respectively.
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Figure 4. Receiver operating characteristic curve of Lassosum, meta-analysis, and TL-Multi in the
analysis asthma study. Lassosum Ind is Lassosum for Indian population, and Lassosum Eur is Lassosum
for European population. The corresponding AUC values with the optimal PRS of Lassosum for Indian
population and European population, meta-analysis, and TL-Multi are 0.5657, 0.5441, 0.5705 and 0.5721,
respectively.
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Table 1. Case prevalence of 2%, 5%, and 10% for the top and bottom quantiles of the PRS distribution
in analysis of SLE study with the target Indian population, generated by Lassosum, meta-analysis, and
TL-Multi.

Prevalence
Bottom Top

2% 5% 10% 10% 5% 2%

Lassosum HK 0.0864 0.1133 0.1309 0.6963 0.7192 0.7407
Lassosum Eur 0.1111 0.1281 0.1704 0.6938 0.7389 0.8148
Meta-Analysis 0.0864 0.0985 0.1309 0.7432 0.8030 0.8519

TL-Multi 0.0741 0.0985 0.1235 0.7160 0.7389 0.7901
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Table 2. Case prevalence of 2%, 5%, and 10% for the top and bottom quantiles of the PRS distribution in
analysis of asthma study with the target Indian population, generated by Lassosum, meta-analysis, and
TL-Multi.

Prevalence
Bottom Upper

2% 5% 10% 10% 5% 2%

Lassosum Ind 0.1500 0.1800 0.1600 0.1900 0.1800 0.2000
Lassosum Eur 0.1500 0.1200 0.1300 0.1600 0.1800 0.0000
Meta-Analysis 0.4000 0.2000 0.2100 0.1400 0.1600 0.100

TL-Multi 0.1000 0.1800 0.1700 0.2000 0.2400 0.2500
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